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Abstract. The nonlinear recurrence Chapman–Enskog solution for the linearized Grad ten-
moment equations is resummed exactly. Using this solution, the stability of higher-order
hydrodynamics in various approximations is discussed.

1. Introduction

The derivation of hydrodynamics from a microscopic description is the classical problem of
physical kinetics. The Chapman–Enskog method [1] derives the solution from the Boltzmann
equation in a form of a series in powers of the Knudsen number ε, where ε is the ratio between
the mean free path of a particle and the scale of variations of hydrodynamic fields. The
Chapman–Enskog solution leads to a formal expansion of the stress tensor and of the heat flux
vector in balance equations for density, momentum and energy. Retaining the first-order term
(ε) in the latter expansions, we come to the Navier–Stokes equations, while further corrections
are known as the Burnett (ε2) and the super-Burnett (ε3) corrections [1].

However, as was first demonstrated by Bobylev [2], even in the simplest case (one-
dimensional linear deviation from global equilibrium), the Burnett and the super-Burnett
hydrodynamics violate the basic physics behind the Boltzmann equation. Namely, sufficiently
short acoustic waves are increasing with time instead of decaying. This contradicts the H -
theorem, since all near-equilibrium perturbations must decay. This creates difficulties for
an extension of hydrodynamics, as derived from a microscopic description, into a highly
non-equilibrium domain where the Navier–Stokes approximation is inapplicable. The latter
problem remains one of the central open problems of kinetic theory (for the most recent
contributions see [3, 4]).

In this paper, the problem of higher-order hydrodynamics is studied within the framework
of exact solutions to simplified models. The linearized ten-moment Grad equations [5] are
considered. The Chapman–Enskog method, as applied to this model, leads to a nonlinear
recurrence solution which also suffers instabilities in the higher-order approximations. The
result of the present study is the exact summation of the Chapman–Enskog expansion valid to
arbitrary order in Knudsen number, and it extends the result [6] where the one-dimensional case
has been considered. This result leads to a quantitative discussion of the Chapman–Enskog
solution in the short-wave domain in frames of the model, and, in particular, it provides a test
of various approximations used to extend the hydrodynamics.
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An additional motivation for this work is due to a recently introduced approach to subgrid
turbulence modelling [7]. This approach makes use of hyperbolic supersets of the Navier–
Stokes equations, such as the lattice Boltzmann equation or the discrete velocity models rather
than the Navier–Stokes equation itself. One point of this approach is directly relevant to
our study: the coarse-graining of the kinetic equations [7] allows us to consider higher-
order hydrodynamics as a source for an effective flow-dependent viscosity. Since the lattice
Boltzmann method is effectively a Grad-like system [8], our study is a relevant first step in this
direction.

2. Summation of the Chapman–Enskog expansion

Throughout the paper, p and u are dimensionless deviations of the pressure and of the average
velocity from their equilibrium values (see [9] for relations of these variables to dimensional
quantities). The point of departure is the set of linearized Grad equations [9] for p, u and σ,
where σ is the dimensionless stress tensor:

∂tp = − 5
3∇ · u

∂tu = −∇p − ∇ · σ

∂tσ = −∇u − 1

ε
σ.

(1)

The over-line will always denote a symmetric traceless dyad, thus

∇u = ∇u + ∇u† − 2
3 I∇ · u

where I is the unity matrix, and the dot denotes the standard scalar product. Equations (1)
provides a simple model of a coupling of the hydrodynamic variables, u and p, to the
non-hydrodynamic variable σ, and corresponds to the case without heat conduction. These
equations are suitable for an application of the Chapman–Enskog procedure. Therefore, our
goal here is not to investigate the properties of equations (1) as they are, but to reduce the
description to a closed set of equations with respect to the variables p and u. That is, we have
to express the tensor σ in terms of spatial derivatives of the hydrodynamic fields p and u. The
Chapman–Enskog method, as applied to equations (1) results in the following:

σCE =
∞∑

n=0

εn+1σ(n). (2)

Coefficients σ(n) are due to the following recurrence procedure [9]:

σ(n) = −
n−1∑
m=0

∂
(m)
t σ(n−1−m) (3)

where the Chapman–Enskog operators ∂
(m)
t act on p and on u as follows:

∂
(m)
t u =

{ −∇p m = 0
−∇ · σ(m−1) m � 1

∂
(m)
t p =

{ − 5
3∇ · u m = 0

0 m � 1.

(4)

Finally, the zeroth-order term, σ(0) = −∇u, leads to the linearized Navier–Stokes
hydrodynamics.

Because of a somewhat involved structure of the recurrence procedure (3) and (4), the
Chapman–Enskog method is a nonlinear operation even in the model (1). Moreover, as was
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shown in [9], the instability is present: the acoustic mode in the Navier–Stokes and in the
Burnett approximations are stable, while it is unstable in the super-Burnett approximation for
sufficiently short waves.

Our goal is to sum up the series (2) in a closed form. First, we note that functions σ(n) in
equations (2)–(4), have the following explicit structure for arbitrary n � 0 [9]:

σ(2n) = an�
n∇u + bn�

n−1G∇ · u

σ(2n+1) = cn�
nGp

(5)

where � is the Laplacian and G = ∇∇ − 1
3 I�, while real-valued and yet unknown coefficients

an, bn and cn are due to the recurrence procedure (3) and (4). Knowing the structure (5), it is
not difficult to reformulate the Chapman–Enskog solution in terms of a recurrence procedure
for the coefficients an, bn and cn. It is most convenient to make the Fourier transform. Taking
u = uk exp(ik · x) and p = pk exp(ik · x) in (5), using (5) in equations (3) and (4), and after
some algebra, we arrive at the following result:

cn+1 = 2an+1 + bn+1 + 2
3

n∑
m=0

(2an−m + bn−m)cm

an+1kuk + bn+1gk(k · uk) =
( n∑

m=0

an−mam

)
kuk

+

(
5
3cn +

n∑
m=0

{
1
3 (2an−m + bn−m)(am + 2bm) + an−mbm

} )
gk(k · uk).

(6)

Here gk = 1
2ekek, and ek is the unity vector directed along k. The second of the equations

in (6) is equivalent to two scalar equations. Introducing rn = 2
3cn and qn = 2

3 (2an + bn), and
using the identity, kuk = (kuk − 2gk(k · uk)) + 2gk(k · uk), and also noticing that

gk : (kuk − 2gk(k · uk)) = 0

we arrive at the following three scalar recurrence relations:

rn+1 = qn+1 +
n∑

m=0

qn−mrm

qn+1 = 5
3 rn +

n∑
m=0

qn−mqm

an+1 =
n∑

m=0

an−mam.

(7)

The initial condition for this system reads: r0 = − 4
3 , q0 = − 4

3 , a0 = −1.
The recurrence relations (7) are completely equivalent to the original Chapman–Enskog

procedure (3) and (4). In the one-dimensional case, the recurrence system (7) reduces to the
first two equations for rn and qn.

Now we will express the Chapman–Enskog series of the stress tensor (2) in terms of
coefficients rn, qn and an. Using the Fourier transform again, and substituting equation (5)
into equation (2), we derive

σCE
k = A(k2)(kuk − 2gk(k · uk)) + 3

2Q(k2)gk(k · uk) − 3
2k2R(k2)gkpk. (8)

From here on, we use a new spatial scale which amounts to k′ = εk, and drop the prime.
Functions A(k2), Q(k2) and R(k2) in equation (8) are defined by power series with coefficients
(7):

A(k2) =
∞∑

n=0

an(−k2)n Q(k2) =
∞∑

n=0

qn(−k2)n R(k2) =
∞∑

n=0

rn(−k2)n. (9)
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Thus, the problem of summation of the Chapman–Enskog series (2) amounts to finding
three functions, A(k2), Q(k2) and R(k2) (9) in the three- and two-dimensional cases, or to the
two functions, Q(k2) and R(k2), in the one-dimensional case.

Now we will focus our attention on the problem of a computation of functions (9) from
the recurrence equations (7). At this point, it is worthwhile to note that usual routes of dealing
with the recurrence system (7) would be either to truncate it at a certain n, or to calculate
all the coefficients explicitly, and next to substitute the result into the power series (9). Both
these routes are not successful here. Indeed, already in the one-dimensional case, retaining
the coefficients q0, r0 and q1 gives the super-Burnett approximation which has a short-wave
instability for k2 > 3 [9], and there is no guarantee that the same will not occur in a higher-order
truncation. On the other hand, a term-by-term computation of the whole set of coefficients is
a quite non-trivial task because equations (7) are nonlinear.

Fortunately, another route is possible. Multiplying each of the equations in (7) by (−k2)n+1,
and performing summation in n from zero to infinity, we obtain

Q − q0 = −k2

{
5
3R +

∞∑
n=0

n∑
m=0

qn−m(−k2)n−mqm(−k2)m

}

R − r0 = Q − q0 − k2
∞∑

n=0

n∑
m=0

qn−m(−k2)n−mrm(−k2)m

A − a0 = −k2
∞∑

n=0

n∑
m=0

an−m(−k2)n−mam(−k2)m.

(10)

Now we note that (the Cauchy rule),

lim
N→∞

N∑
n=0

n∑
m=0

an−m(−k2)n−mam(−k2)m = A2

lim
N→∞

N∑
n=0

n∑
m=0

qn−m(−k2)n−mrm(−k2)m = QR

lim
N→∞

N∑
n=0

n∑
m=0

qn−m(−k2)n−mqm(−k2)m = Q2.

(11)

Taking into account the initial data, q0 = r0 = − 4
3 , a0 = −1, and also using expressions (11),

we come in equation (10) to the following three quadratic equations for functions A, R and Q:

Q = − 4
3 − k2

(
5
3R + Q2

)
R = Q(1 − k2R)

A = −(1 + k2A2).

(12)

The result (12) solves essentially the problem of computation of functions (9). Some
further simplifications are possible. Introducing a new function, X(k2) = k2R(k2), we derive
a cubic equation:

− 5
3 (X − 1)2

(
X + 4

5

) = X

k2
. (13)

We shall also rewrite the third equation in the system (12) using a function Y (k2) = k2A(k2):

Y (1 + Y ) = −k2. (14)

Functions of interest (9) can be expressed in terms of relevant solutions to equations (13)
and (14). Since all functions in equations (9) are real-valued, we are interested only in real-
valued roots of equations (13) and (14).
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Equation (13) was already discussed in [6]: the real-valued root X(k2) is unique and
negative for all finite values of parameter k2. This root is relevant to the extended acoustic
mode. Moreover, function X(k2) is a monotonic function of k2. Limiting values are

lim
k→0

X(k2) = 0 lim
k→∞

X(k2) = − 4
5 . (15)

The quadratic equation (14) has no real-valued solutions for k2 > 1
4 , and has two real-

valued solutions for each k2, where k2 < 1
4 . We denote by kc = 1

2 the corresponding critical
value of the wavevector. For k = 0, one of these roots is equal to zero, while the other is equal
to one. The asymptotic Y → 0, as k → 0, answers the question of which these two roots is
relevant to the Chapman–Enskog solution, and we derive

Y =
{

− 1
2

(
1 −

√
1 − 4k2

)
k < kc

none k > kc.
(16)

The function Y (16) is negative for k � kc.

3. Hydrodynamic modes

The Fourier image of the function ∇ · σCE follows from equation (8):

ik · σCE
k = Y ((ek · uk)ek − uk) − X

1 − X
(ek · uk)ek − iXkpk. (17)

This expression contributes to the right-hand side of the Fourier-transformed momentum
equation (the second line in Grad’s system (1)). Knowing (17), we calculate the dispersion
relation ω(k) of plane waves ∼ exp{ωt + ik · x}. This computation is standard, and we only
reproduce the final result. The exact dispersion relation of the hydrodynamic spectrum reads:

(ω − Y )d−1

(
ω2 − X

1 − X
ω +

5

3
k2(1 − X)

)
= 0 (18)

where d is the spatial dimension. From the dispersion relation (18), we easily derive the
following classification of the hydrodynamic modes.

(a) For d = 1, the spectrum is purely acoustic with the dispersion ωa:

ωa = X

2(1 − X)
± i

k

2

√
5X2 − 16X + 20

3
(19)

where X = X(k2) is the real-valued root of equation (13). Since X is a negative function
for all k > 0, the damping rate of acoustic modes, Re ωa , is negative for all k > 0, and
the exact acoustic spectrum of the Chapman–Enskog procedure is free of the instability
for arbitrary wavelengths. In the short-wave limit, expression for the acoustic branch (19)
reads

lim
k→∞

ωa = − 2
9 ± ik

√
3. (20)

(b) For d > 1, the acoustic branch of the spectrum is given by equation (19). As follows from
the Chapman–Enskog procedure, the shear mode has the dispersion ωd:

ωd =
{

− 1
2

(
1 −

√
1 − 4k2

)
k < kc

none k > kc.
(21)

The shear mode is (d−1) times degenerated, the corresponding attenuation rate is negative
for k < kc, and this mode cannot be extended beyond the critical value kc = 1

2 within the
Chapman–Enskog method.
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Figure 1. Attenuation rates (real parts of ω) as functions of the reduced wavevector k. Dots,
the Navier–Stokes approximation, acoustic branch. Circles, the super-Burnett approximation,
acoustic branch. The instability occurs when this line crosses the horizontal axis at k = √

3. Bold
curve, the exact Chapman–Enskog solution, acoustic branch (19). Full curve, the exact Chapman–
Enskog solution, diffusion branch (21). Broken curve, the non-hydrodynamic branch of Grad’s
equations (1).

The reason why this singularity occurs can be found upon a closer investigation of the
spectrum of the underlying Grad moment system (1). In the original system, there exist several
non-hydrodynamic modes which are irrelevant to the Chapman–Enskog solution. All of these
non-hydrodynamic modes are characterized by the property that corresponding dispersion
relations ω(k) are not equal to zero at k = 0. In the point kc = 1

2 , the branch (21) intersects
with one of the non-hydrodynamic branches of equation (1). For larger k, these two branches
produce a pair of complex-conjugated solutions with the real part equal to − 1

2 . Though the
spectrum of Grad’s equations (1) indeed continues after kc, the Chapman–Enskog method does
not recognize this extension as a part of the hydrodynamic mode.

Functions Re ωa and Re ωd are shown in figure 1, together with some approximations of
the Chapman–Enskog method. The non-hydrodynamic branch of equations (1) which causes
the breakdown of the Chapman–Enskog solution is also represented in figure 1. It is remarkable
that, while the exact hydrodynamic description becomes inapplicable for the diffusion mode at
k � kc, the Navier–Stokes description is still providing a good approximation to the acoustic
mode around this point. Finally, we remind the reader that all the results of this section are
represented in reduced units: while the parameter ε enters the Chapman–Enskog procedure
as a smallness parameter, this ‘smallness’ is meaningless in the sum of the Chapman–Enskog
expansion. Formally, one can put ε = 1 after the summation.

4. The stationary limit

It is instructive to discuss the stationary limit of the exact hydrodynamics. This point is
non-trivial, in general, because the Chapman–Enskog method is applicable solely to time-
dependent equations, and its stationary limit must be considered only after the solution to the
first problem is obtained. Let us recall that for the linearized Boltzmann equation, the stationary
limit of the Chapman–Enskog solution was first found by Grad [10] and later demonstrated in
detail by Galkin [11]. The essence of this result is as follows: the exact linearized stationary
hydrodynamics is represented by the linearized stationary Navier–Stokes equations, while the



Exact summation of the Chapman–Enskog expansion 8043

stationary Chapman–Enskog expansions of the stress tensor and of the heat flux degenerate to
polynomials. This result is also valid for the linearized 13-moment Grad equations [12]. Let
us discuss this point in some detail for our case.

For this purpose, let us come back to the Chapman–Enskog coefficients (5). First, we
remark that in the stationary case the functions u and p in these expressions become solutions
to equations with specified boundary conditions rather than the unspecified parameters they
were in the non-stationary case. With this preliminary remark, let us represent the stationary
Chapman–Enskog stress tensor as

σCE
st = σ

(0)
st + δσCE

st (22)

where σ
(0)
st is the stationary Navier–Stokes stress tensor. Substituting expression (22) into the

stationary momentum equation (1), we have:

∇ · u = 0

∇p = −∇ · σ
(0)
st − ∇ · δσCE

st .
(23)

Let us now assume that

∇ · δσCE
st = 0 (24)

on solutions to the stationary linearized Navier–Stokes equations which follow from
equations (23) under the assumption (24):

∇ · u = 0 �p = 0 ∇p = ε�u. (25)

Furthermore, let us assume usual boundary conditions under which solutions to equations (25)
are well defined (we do not need further details on the boundary conditions to complete the
analysis). Now, from the structure of the Chapman–Enskog coefficients (5), it follows that all
terms in δσCE

st become equal to zero on solutions to the Navier–Stokes equations (25), except
for the functions σ

(1)
st and σ

(2)
st , so that

δσCE
st = ε2c0∇∇p + ε3a1�(∇u + ∇u†). (26)

We stress that in this expression, functions u and p are solutions to equations (25), and
cancellation means that all equations σ(n) = 0, n � 3, have solutions which also satisfy
equation (25). Finally, it is straightforward to check that expression (26) verifies equation (24).
This validates our assumption (24), and thus we have the following result: exact stationary
hydrodynamic equations are given by the Navier–Stokes equations (25), while the exact
stationary Chapman–Enskog stress tensor is a polynomial which contains the Navier–Stokes,
the Burnett and the super-Burnett terms,

σCE
st = −ε(∇u + ∇u†) + ε2c0∇∇p + ε3a1�(∇u + ∇u†). (27)

This result fully agrees with the results for the linearized Boltzmann equation mentioned
above. The analysis just presented is a sort of consistency between solutions to hydrodynamic
equations and stress tensors. The final question is whether the limit just established is well
defined, or, whether there are other representations,

σCE
st = σ′

st + σ′′
st

where σ′
st = σNS

st , and where ∇ · σ′′
st = 0 on solutions to the equations,

∇ · u = 0 ∇p = −∇ · σ′
st. (28)

In order to answer this question, we note that under the usual boundary conditions, solutions
to the Navier–Stokes equations (25) are also solutions to the equations just written. Thus,
as soon as only standard boundary conditions are concerned, the stationary limit (27) is well
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defined. Non-standard boundary conditions, under which equations (28) may have solutions
that do not reduce to the solutions of the Navier–Stokes equations, can, in principle, challenge
this result (see a discussion in the next section).

It is remarkable that though the exact stationary linearized hydrodynamics is given by
the Navier–Stokes equations, σCE

st = σNS
st . This remark is intended to prevent possible

misconceptions: due to the simplicity of the system (1), it might seem that the stationary
hydrodynamic equations (25) can be found directly, without using the Chapman–Enskog
method. For instance, solving the stationary equation ∂tσ = 0 = −∇u − ε−1σ, one obtains
σ = −ε∇u. Substitution of the latter expression into the stationary momentum equation gives
equations (25). Another possibility is as follows: eliminating σ right at the outset by means
of differentiation in t , we arrive at the telegraph equation,

∂2
t u + ε−1∂tu = 5

3∇(∇ · u) + ∇ · ∇u − ε−1∇p.

The stationary version again leads to the Navier–Stokes equations. There are certainly other
possibilities to obtain the same result. However, along these lines one fails to derive the
correct stationary Chapman–Enskog stress tensor (27), as well as to discuss the relevance of
the boundary conditions. The reason is that none of these methods respects the correct order
of the two operations: elimination of the time derivative (first), and taking the stationary limit
(second). In the first step, the Chapman–Enskog method serves to define what is the stress
tensor in terms of the hydrodynamic variables, while the second step uses the result of the
first and the consistence treatment as demonstrated above. Thus, only the Chapman–Enskog
method, or its analogues which deal with elimination of the time derivative, can be regarded
as valid methods to derive hydrodynamics even for the stationary case. Also various time-
independent conditions, such as the incompressibility condition, can be imposed only on after
the Chapman–Enskog solution is established: if the incompressibility condition is imposed
within equations (4), this affects the recurrence equations (6) and (7). Finally, the very fact that
the Navier–Stokes equations appear in the true derivation and by addressing the stationary case
directly is merely a coincidence caused by the simplicity of the system (1), and it is neither
the case already for the linearized 13-moment equations nor for the nonlinear ten-moment
equations.

5. Implications for modelling of extended hydrodynamics

The Grad equations like equation (1) can be viewed as the minimal kinetic model where the
Chapman–Enskog method shows some of its features similar to the case of the Boltzmann
equation. These features are: (a) the Chapman–Enskog method is the nonlinear recurrence
procedure; (b) finite-order approximations suffer the instability; (c) there exists a crossover
of the diffusion-like hydrodynamic mode to a non-hydrodynamic mode (similar behaviour is
know for the kinetic Lorentz gas model). Because exact summation of the Chapman–Enskog
expansion for the Boltzmann equation is a difficult unsolved problem even in the linearized
case, and also because the Chapman–Enskog expansion for much simpler models like the one
discussed in this paper have definite common points with the ‘true’ case, it is appealing to think
of using them to suggest models of generalized higher-order hydrodynamics. We remark that
while the linearized case is also solved for Grad’s 13-moment approximation, where the heat
flux is included [13], the situation is much more complicated for nonlinear Grad equations
where only partial results have been obtained so far [14]. We indicate here how suggestions
for extended hydrodynamics should be made.

The approximate generalized hydrodynamics is thought of as the result of approximations
carried upon the Chapman–Enskog recurrence procedure as a whole, and its validity is
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tested by a comparison with the results of exact summation. To this end, let us impose
the incompressibility condition, ∇ · u(x, t) = 0, and let us also assume that the stationary
pressure field satisfies the Laplace equation, �p(x) = 0. With this, the Chapman–Enskog
solution reduces to the following recurrence relations (see equations (5) and (7)):

σ(2n) = an�
n∇u

an+1 =
n∑

m=0

an−mam

a0 = −1.

(29)

Let us now approximate the nonlinear recurrence relation by the linear relation [9]:

an+1 = a0an a0 = −1. (30)

Summation of the Chapman–Enskog expansion with coefficients (30) results in the stress
tensor,

σ = a0ε(1 − a0ε
2�)−1∇u (31)

while the non-stationary momentum equation reads,

∂tu(x, t) = −∇p(x) − a0ε(1 − a0ε
2�)−1�u(x, t). (32)

Approximations of the form (31) were suggested earlier [9, 15] as a way to regularize
the instability of the higher-order approximations for the acoustic part of the extended
hydrodynamics, systematic procedures to extend this approximation have also been discussed
[9]. Here the approximation (32) is relevant to the diffusion-like part. As we have learned
from the exact summation, the Chapman–Enskog solution does not exist after k > kc. The
approximation (31) reflects this feature by a pole at kp = |a0|−1/2ε−1: the decay rate tends
to −∞ as |k| → kp from the left, thus, no hydrodynamics is excited above this value. In
the stationary limit, it can be demonstrated that the simplest non-Navier–Stokes equation
associated with equation (32) is as follows:

(1 + a0ε
2�)�u(x) = ∇p(x). (33)

The demonstration goes along the same lines as in the preceding section. If boundary
conditions for equation (33) are such that the stationary Navier–Stokes equations have a
solution then we return to the above discussion. However, equation (33) is of higher (fourth)
order, and it also has solutions for boundary conditions which are invalid for the Navier–
Stokes equation. The example discussed here reflects the following expectation concerning
higher-order hydrodynamics: on the one hand, in the non-stationary case, the stress tensor
should be represented by a highly non-local operator in order to be able to reproduce the
asymptotics of the linear hydrodynamics as given by the Chapman–Enskog solution. On the
other hand, in the stationary case, this non-local operator should reduce to a polynomial so
that the boundary conditions can be discussed in a straightforward way. Finally, a comment is
in order concerning the validity of the extended hydrodynamics. Though the Grad equations
originate from the Boltzmann equation for the dilute gas, the structure of these equations is
quite general, for instance, many of the well known constitutive equations in rheology have this
type of coupling between the hydrodynamic and non-hydrodynamic degrees of freedom [16].
Thus, it is expected that the universality of the extended hydrodynamic equations is similar to
the universality of the Navier–Stokes equations. It is not excluded that the non-trivial boundary
conditions are the key to experimental verification of the extended hydrodynamics.
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6. Conclusions

In this paper, we have found the sum of the Chapman–Enskog expansion for the minimal
kinetic model (1). This result demonstrates the following.

(a) The acoustic-like mode of the exact hydrodynamics extends to all values of the wavevector
and is stable. This extension contrasts sharply with its finite-order approximations which
are unstable.

(b) The Chapman–Enskog solution for the diffusion-like mode extends only to the crossover
value of the wavevector. After the crossover, the Chapman–Enskog solution does not
exist. Any finite-order approximation, while stable, does not indicate the crossover and
therefore is qualitatively wrong at large wavenumbers. These results demonstrate that
taking account of the Chapman–Enskog expansion to all the orders is unavoidable to
extend the non-stationary hydrodynamics beyond the Navier–Stokes approximation.

(c) The stationary limit of the exact Chapman–Enskog solution is shown to be consistent with
the known result for the linearized Boltzmann equation. The importance of the boundary
conditions and of the correct transition to the stationary limit have been stressed. We have
also discussed how the minimal kinetic models can be of use for suggesting extended
hydrodynamics.
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